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1. Introduction

Compactifications with fluxes (see [1] for reviews) have been intensively studied in the

past few years for their potential phenomenological applications. They provide us with

powerful tools for finding stable or metastable vacua within string theory. The topological

requirement for a reduction to a four-dimensional low energy supersymmetric effective the-

ory is that the internal manifold should allow a nowhere vanishing spinor. Six-dimensional

manifolds admitting nowhere vanishing spinors have structure group reduced to SU(3) or

subgroups of it [2, 3]. On manifolds of G-structure, there is always a torsionful connec-

tion under which the G-invariant spinor is covariantly constant. Torsion leads to non-

integrability of the G-structure, and can be thought as another NSNS flux of the theory

(and thus is sometimes called “(geo)metric flux”). In some situations it can be dual to

NSNS 3-form flux H.

The effective N = 1 theory for reductions on (orientifolds of) SU(3)-structure mani-

folds [4 – 11] is defined by a Kähler potential and a superpotential. The former describes

the space of moduli consisting of variations of the RR potentials and deformations of B-

field and metric in the class of SU(3) structure manifolds. The superpotential involves all

the fluxes, RR and NSNS (H and torsion). Supersymmetric vacua can be found either by

varying the action [12 – 17], or directly by solving the six-dimensional internal first order

differential equations for supersymmetric vacua [18]. The two procedures have been shown

to be equivalent [19].

After the huge progress achieved in understanding the conditions for supersymmetric

vacua and finding examples, the path continues by exploring the mechanisms of supersym-

metry breaking, and finding stable or metastable non-supersymmetric vacua. Spontaneous

breaking of supersymmetry can be generated dynamically, or be present already at tree

level. Long-lived metastable vacua with dynamically broken supersymmetry were found

in SQCD [20], and their stringy realizations proposed in [21 – 23]. On the other hand, su-

pergravity vacua with supersymmetry broken at tree level have been mostly considered in

the framework of type IIB supergravity compactified in Calabi-Yau orientifolds with O3-

planes and a imaginary self-dual combination of NSNS and RR 3-form fluxes [24]. There,

the amount of supersymmetry breaking is a tunable parameter which can be set to zero,

and the solutions can be seen as “marginal” deformations of N = 1 vacua. From the

four-dimensional point of view, the sector that breaks supersymmetry only involves moduli

descending from N = 2 hypermultiplets (which in this case correspond to deformations of

the Kähler form). The cosmological constant vanishes at tree level, and the supersymmetry

breaking vacua are of no-scale type [25]. At the quantum level, however, non-perturbative

effects may lift the remaining flat directions and restore supersymmetry in an AdS vacuum.

This AdS point has been the basic building block in many of the recent attempts to address

the problem of supersymmetry breaking within compactifications of string theory, and also

for building up models with de-Sitter minima [26].

When D-branes are present, spontaneous breaking of supersymmetry in the bulk is

communicated to the brane sector by the moduli in the closed string sector (neutral mat-

ter), and manifests in the open string sector (charged matter) as soft-breaking of supersym-
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metry [27 – 29]. Soft-supersymmetry breaking terms for D-branes on Calabi-Yau manifolds

or tori in the presence of supersymmetry breaking fluxes have been obtained in [30 – 38].

These papers show that no-scale spontaneous breaking of supersymmetry by imaginary

self-dual 3-form fluxes is not communicated to D3-branes. However, for branes wrapping

internal dimensions, richer patterns of soft-terms arise.

Motivated by all these results, in this paper we look for classes of no-scale supersymme-

try breaking vacua involving orientifolds (O5/O9 and O6) of manifolds of SU(3) structure.

Supersymmetry is broken spontaneously by fluxes and torsion. The supersymmetry break-

ing vacua we discuss are basically divided into two types, one where the supersymmetry

breaking sector lies entirely in descendants of N = 2 hypermultiplets, and another one

where the breaking sector involves the two type of moduli, those descending from hyper-

multiplets and those from vector multiplets. The former are believed to be T-dualizable

to O3 setups of the class in [24], while the latter, which includes Scherk-Schwarz mecha-

nism [39], seem to have non-geometric O3 duals. We illustrate each class with examples in

toroidal models. Similar toroidal no-scale vacua were obtained from the four-dimensional

low-energy action in [12, 15], whereas some previous work on no-scale supersymmetry

breaking in supergravity compactifications was carried out in [40].

In a similar fashion than H and RR fluxes, metric fluxes induce µ-terms as well as

soft-supersymmetry breaking terms on D-branes. In the article we also study the effect

of torsion on D5, D9 and D6-branes in toroidal models. Using the brane superpotentials

of [41], we find the torsion induced µ-terms. Finally, we analyze the soft-supersymmetry

breaking patterns for the classes of supersymmetry breaking vacua discussed previously,

for pure moduli mediation.

The paper is organized as follows. In section 2 we show the basic features of com-

pactifications on manifolds of SU(3) structure. We use concepts of generalized complex

geometry [42, 43], which we find best adapted to describe the bulk and brane physics. In

section 3 we discuss supersymmetry breaking no-scale vacua in IIB, illustrate with exam-

ples, and find the induced µ-terms on D9 and D5-branes. In section 4 we analyze the

IIA counterparts. In section 5 we study the soft-supersymmetry breaking patterns for the

two classes of supersymmetry breaking mechanisms discussed in sections 3.1 and 4.1. Sec-

tion 6 contains a summary and conclusions. Appendices A, B and C present some of the

conventions used, as well as some technical details needed in the text.

2. Compactifications with SU(3) structure and D-branes/orientifold planes

In this section we review the necessary features about Minkowski compactifications on

manifolds of SU(3) structure, and supersymmetric D-branes on them.

2.1 Type II supergravities on SU(3) structure manifolds: bulk

We study warped compactifications on manifolds of SU(3) structure, i.e. the ten-

dimensional metric is given by

ds2 = e2Aηµνdxµdxν + ds2
M6

, µ = 0, 1, 2, 3 (2.1)

– 3 –
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where e2A is the warp factor. The internal manifold M6 has SU(3) structure [2, 3], which

we define in the following subsection, and use all throughout the text.

2.1.1 SU(3) structure definitions

On a manifold of SU(3) structure there is a globally defined SU(3) invariant non-degenerate

2-form J , and a holomorphic 3-form Ω satisfying

J ∧ Ω = 0 , J ∧ J ∧ J = −i
3

4

NJ

NΩ
Ω ∧ Ω̄ , (2.2)

for some constants NJ , NΩ. The former conditions say that J is a (1,1)-form in the complex

structure defined by Ω. The constants NJ , NΩ define the normalization of J and Ω, in the

following sense,1

NJ ≡ 1

6

∫

J ∧ J ∧ J , NΩ ≡ 1

8i

∫

Ω ∧ Ω . (2.3)

In this parametrization, NJ corresponds to the volume of the manifold whereas 1
6J3 is the

volume form. A very important fact is that for manifolds with just SU(3) structure, there

are no globally defined 1-forms.

J defines a symplectic structure Jmn (a skew-symmetric map from T × T to R with

inverse J−1) and Ω a complex structure Im
n (a map from T to itself that squares to -1).

Provided (2.2) is satisfied, both structures intersect on a SU(3) structure. The complex

structure I can be read off from the local decomposition of Ω in terms of holomorphic

1-forms zi, namely we can write locally Ω = 1
6ǫijkz

i ∧ zj ∧ zk. The dual vectors to zi, that

we call ∂zi , form a basis for holomorphic vectors v = vi∂zi = vm∂m, where ∂m is a basis of

real coordinates. The complex structure should be such that a vector constructed in this

way is holomorphic, namely Im
nvn = ivm.

J and I (or equivalently Ω) define a metric, given by

gmn = Jmp Ip
n , (2.4)

which is automatically symmetric if the first condition in (2.2) is satisfied. The SU(3)

structure can be given alternatively by the metric and a globally defined SU(3) invariant

spinor η. Then, J and Ω can be constructed as bilinears of the spinor, as we show in (A.2).

If the symplectic and holomorphic forms are closed, dJ = 0, dΩ = 0, the corresponding

structures are integrable. For the case of Ω, this implies that there are local functions

f i such that the 1-forms zi = df i (i.e., the equation z = df is integrable). An analogous

statement can be made with integrable symplectic structures. In such case, the manifold

has SU(3) holonomy. On a generic SU(3) structure, none of the structures is integrable,

and therefore dJ and dΩ are not zero. The 3-form dJ and 4-form dΩ can be decomposed in

SU(3) representations, and the corresponding components are the torsion classes, defined

as [2]

dJ =
3

2

NJ

NΩ
Im(W1Ω) + W4 ∧ J + W3 , (2.5)

dΩ = W1J ∧ J + W2 ∧ J + W5 ∧ Ω , (2.6)

1A usual convention is to take the ratio NJ/NΩ = 1, but here we find it more convenient to leave it

unfixed.
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where W1 is a complex scalar, W2 a complex primitive (1,1) form, W3 a real primitive

(2, 1) + (1, 2) form and W4 and W5 real vectors (W5 is actually a complex (1,0)-form,

which has the same degrees of freedom).

2.1.2 SU(3) structures and generalized complex geometry

Generalized complex geometry [42, 43] is a suitable framework for describing IIA and IIB

on the same footing. We will give here just a very minimal review of it containing the basic

definitions we will use. More extensive reviews in the context of flux compactifications can

be found for example in [7, 44 – 47].

Complex and symplectic structures can actually be defined by a single type of structure:

a generalized complex structure [42, 43]. Generalized complex structures are defined in an

analogous way as standard complex structures, i.e. as maps from a bundle to itself that

square to −1. The bundle in question is however extended (or generalized) to the sum of

the tangent plus cotangent bundles of the manifold, TM⊕T ∗
M. From J and I we can build

the following generalized complex structures,

J− =

(

I 0

0 −IT

)

, J+ =

(

0 J−1

−J 0

)

, (2.7)

where the meaning of the subscripts plus and minus will become clear later.

There is a one to one map between generalized complex structures and O(6, 6) pure

spinors (i.e., spinors annihilated by half of the Clifford(6,6) gamma matrices). Given a

pure spinor Φ, its corresponding generalized complex structure JΦ is such that the +i

eigenbundle of JΦ is the annihilator of the pure spinor. In addition, O(6, 6) spinors are

isomorphic to sums of forms.2 Positive (negative) chirality spinors are associated to even

(odd) forms.

The O(6, 6) pure spinors corresponding to (2.7) are

Φ− = 8eiθ− η+η†− = −ieiθ−

(NJ

NΩ

)1/2

Ω , Φ+ = 8eiθ+ η+η†+ = eiθ+e−iJ , (2.8)

where η is the O(6) spinor defining the SU(3) structure. In order to get the forms, we have

used the Fierz identity (A.4) and the bilinears in (A.2). Notice that Φ− (Φ+) contains

only odd (even) forms, as it should be from their chiralities. This explains the use of

plus and minus in (2.7). Moreover, the one to one correspondence between generalized

complex structures and pure spinors define the latter up to some overall complex number,

that we chose to be 8exp(iθ±). These phases will be important later, and are fixed by the

orientifold projection.

The action of the B-field on the pure spinors can be encoded in the “B-transform” of

the spinor, e−BΦ, where e−B = 1−B ∧+ (1/2)B ∧B ∧+ · · · . It is not hard to show that

if Φ is a pure spinor, then e−BΦ is also pure. This allow us to work in terms of some new

spinors Φ̃± ≡ e−BΦ± which define not only the metric, but also the B field. However, if

Φ is closed, Φ̃ is generically not closed, as it contains dB. It is useful to define the twisted

2The isomorphism is γm1...mk ∼= em1 ∧ . . . ∧ emk .
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exterior derivative dH = d−H∧, where H may also contain a possible background flux H̄,

such that

dΦ̃ ≡ d
(

e−BΦ
)

= e−BdHΦ . (2.9)

If Φ̃ is integrable with respect to d, so is Φ with respect to dH . Note that the B-field

action does not modify Φ− since for an SU(3) structure B has to be (1,1), and therefore

B ∧ Ω = 0. We leave it nevertheless to include the action of H on the exterior derivative.

The B-transform of a given pure spinor is associated to the B-transform of its gener-

alized complex structure, given by

J B = BJB−1 , B =

(

1 0

−B 1

)

. (2.10)

Since B is a (1,1)-form, the matrix BI is symmetric and therefore J B
− = J−. The gener-

alized complex structure J+ on the contrary is modified to

J B
+ =

(

J−1B J−1

−(J + BJ−1B) −BJ−1

)

. (2.11)

In what follows we will mainly work with the polyforms (2.8), although for some particular

purposes, such as the moduli definitions, it will be more convenient instead to make use

of Φ̃±.

2.1.3 Orientifold projection and N = 1 vacua

No-go theorems for Minkowski compactifications imply that whenever fluxes are turned

on, we need sources of negative charge and tension if the internal manifold is compact.

We therefore study compactifications on orientifolds of manifolds of SU(3) structure, con-

centrating on O5/O9 compactifications of type IIB, and O6 compactifications of type IIA.

The orientifold projection is the selection of even states under the combined action of the

world-sheet parity ΩP and an involution σ (for consistency, an additional factor of (−1)FL

is needed for O3/O7 and O6 projections). The involution σ should be holomorphic in IIB

(σI = I) and antiholomorphic in IIA (σI = −I). This leads to the following action on J

and Ω [48 – 50]3

O6: σJ = −J , σΩ = Ω̄ ,

O5/O9: σJ = J , σΩ = Ω . (2.12)

We can think of this as an action on the pure spinors as follows: the world-sheet parity

operator exchanges left and right movers, which on the bispinors in (2.8) has the effect of

a transposition.4 On the forms associated to the bispinors, this transposition amounts to

conjugation plus some signs, which are conveniently encoded in the operator

λ(A) =
∑

n

(−1)[(n+1)/2]An , (2.13)

3The O6 projection allows σΩ = eiθΩ̄. Here we are fixing θ = 0.
4Φ± in (2.8) should be thought as ηL+η†

R±. On a manifold of SU(3) structure there is only one globally

defined spinor η, and therefore we have, up to overall normalization that we fix to 1, ηL+ = eiθLη+ , ηR+ =

eiθRη+. The phases in (2.8) are θ± ≡ θL ∓ θR

– 6 –
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where the subindex n denotes the degree of the form and [. . .] is the integer part. The

action of σ on the forms (2.8) is therefore [8],

O6: σΦ+ = λ(Φ+) , σΦ− = λ(Φ̄−) ,

O5/O9: σΦ+ = −λ(Φ̄+) , σΦ− = λ(Φ−) . (2.14)

The phases θ± in (2.8) are then fixed to θ+ = 0, θ− = π/2 for O6, and θ± = π/2, for O5/O9.

The equations for N = 1 Minkowski vacua in terms of Φ± are [18],

dH(e3A−φΦ1) = 0 ,

dH(e3A−φΦ2) = −e3A−φdA ∧ Φ̄2 − e3A ∗ λ(F ) (2.15)

where

IIA: Φ1 = Φ+ , Φ2 = Φ−

IIB: Φ1 = Φ− , Φ2 = Φ+ . (2.16)

The RR form F is a purely internal form related to the total ten-dimensional RR field

strength,

F (10) = F + vol4 ∧ λ(∗F ) , F =

{

F0 + F2 + F4 + F6 (IIA)

F1 + F3 + F5 (IIB)
(2.17)

where λ is defined in (2.13), ∗ is the six-dimensional Hodge dual and the RR field strengths

Fn = dCn−1 − H ∧ Cn−3 + eBF̄ (2.18)

satisfy the Bianchi identity d(e−BF ) = 0 in absence of localized sources.

Equations (2.15) tell us that N = 1 Minkowski vacua require one closed pure spinor,

whose parity is equal to that of the RR fluxes. The latter act as an obstruction for

integrability of the real part of the other pure spinor.

2.1.4 Kähler potential, superpotential and no scale vacua

The moduli for N = 1 compactifications arrange in chiral multiplets. The orientifold

projection splits the N = 2 vector multiplets into N = 1 vector and N = 1 chiral multiplets.

The latter contain the scalars parameterizing variations of Φ1. The N = 2 hypermultiplets

parameterize variations of Φ2 (plus the dilaton and axion Bµν), paired with the axions

from RR scalars. The orientifold projection keeps only the variations in the real part of

Φ2, and combines them with the surviving RR scalars, in the poly-form [8]

Π = C + i e−φ ReΦ2 , (2.19)

with C the sum of RR potentials (which have the same chirality as the form Φ2).

The N = 1 Kähler potential is [8]

K = −log

[

−i

∫

〈Φ1, Φ̄1〉
]

− 2 log

[

−i

∫

〈Φ2, Φ̄2〉
]

− 2log
(

e−2φ
)

(2.20)
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where the Mukai pairing is defined as

〈A,B〉 = (−1)[(n+1)/2]An ∧ B6−n = [λ(A) ∧ B]6 . (2.21)

Φ1 and Π (or more precisely their B-transforms, Φ̃1 and Π̃) should be expanded in a basis

of even or odd forms under the orientifold involution, according to the case. The moduli in

Φ̃1 descend directly from their N = 2 counterparts (but only those corresponding to forms

with the appropriate parity survive). As for Π̃, in order to get a Kähler moduli space, some

redefinitions are needed from the N = 2 counterparts. We will give the precise definitions

of the moduli in sections 3.1 and 4.1.

The superpotential for SU(3) compactifications has been computed in [7, 8] and reads

simply,

W =

∫

〈Φ1, dH Π〉 . (2.22)

From (2.8) and (2.19) we observe that,

O5/O9: Φ1 =

(NJ

NΩ

)1/2

Ω , Φ2 = ie−iJ , dHΠ = F3 + ie−φdHJ , (2.23)

O6: Φ1 = e−iJ , Φ2 =

(NJ

NΩ

)1/2

Ω , dHΠ = F + iCRe dHΩ , (2.24)

where C = e−φ(N−1
Ω NJ)1/2 = e−φ(4)N−1/2

Ω . Substituting in (2.20) and (2.22) then leads to

the familiar expressions for type IIA and IIB,

O5/O9: K = −log

[

−i

∫

Ω ∧ Ω

]

− log e−4φ(4) (2.25)

W =

∫

Ω ∧ (F3 + ie−φdJ) , (2.26)

O6: K = −log

[

4

3

∫

J ∧ J ∧ J

]

− log e−4φ(4) (2.27)

W =

∫

[eiJ ∧ F ]6 + iC

∫

ReΩ ∧ (H + idJ) , (2.28)

where we have performed a partial integration in order to derive the IIA superpotential

and a Kähler transformation to eliminate an extra factor (NΩ/NJ)1/2 from the IIB super-

potential. In what follows we will use the notation G ≡ dHΠ.

A generic Kähler potential K and superpotential W define a potential V equal to

V = eK





∑

i,j

KīDiWD̄W − 3|W |2


 (2.29)

where i, j run over all the N = 1 moduli, and DiW = (∂i + Ki)W (with Ki = ∂iK). If

(i) the Kähler potential for a subset of moduli {ı̃} satisfies a no-scale condition [25],

∑

ı̃

K ı̃¯̃∂ı̃K∂¯̃K = 3 , (2.30)
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(ii) there are no mixed terms K ı̃̄ in the inverse of the Kähler metric, and

(iii) the superpotential is independent of the moduli ı̃, then the negative piece −3|W |2 in

the potential is cancelled, and the resulting potential is positive definite,

V = eK
∑

i,j 6=ı̃

KīDiWD̄W . (2.31)

This potential has an absolute minimum at V = 0 when DiW = 0, for all i 6= ı̃. At

this no-scale minimum supersymmetry is broken by the F-terms of the moduli ı̃, since

Dı̃W = Kı̃W 6= 0. We will see in sections 3.1 and 4.1 that there are several choices for the

subset {ı̃} for the Kähler potential (2.20).

2.2 D-branes on SU(3) structure manifolds

We consider D-branes extended in 4d Minkowski space-time, wrapping an internal cycle Σ.

The world-volume combination F = F − PΣ[B] (with PΣ the projection along Σ) should

satisfy the Bianchi identity dF = −PΣ[H]. We denote a brane by the pair (Σ,F).

Supersymmetric “generalized cycles” (Σ,F) have to satisfy the D-flatness and F-

flatness conditions. The former reads [41],

D(Σ,F) = PΣ[e2A−φImΦ2] ∧ eF |top = 0 (2.32)

where Φ2 = Φ−(Φ+) in IIA (IIB), is the non-integrable pure spinor in an N = 1 vacuum.

Notice however that (2.15) implies that e2A−φImΦ2 is closed on the supersymmetric

vacuum.

The F-flatness conditions, which can be derived from the superpotential (2.37) below,

read

Fm(Σ,F) = PΣ[e3A−φ(ιm + gmndyn∧)Φ1] ∧ eF |top = 0 (2.33)

with Φ1 = Φ+(Φ−) for IIA (IIB), the integrable pure spinor, and ιm denotes a contraction

along ∂m.

The F-flatness conditions imply that D-branes wrap generalized complex submanifolds

(Σ,F) [43, 51, 52], which means that their generalized tangent bundle

T(Σ,F) = {v + ξ ∈ T ⊕ T ∗|Σ : ιvF = PΣ[ξ]} (2.34)

is stable under the integrable generalized complex structure associated to Φ1 (i.e. if we

denote J1 this generalized complex structure, J1X ∈ T(Σ,F), ∀X ∈ T(Σ,F)). In type

IIB, Φ1 = Φ− is proportional to Ω, which defines a complex structure, and therefore the

generalized complex submanifolds are complex submanifolds and F is (1,1). In type IIA,

Φ1 = Φ+ is proportional to e−iJ , which defines a symplectic structure, and therefore the

complex submanifolds wrapped by D6-branes are special Lagrangian, and F = 0. We

will see this in more detail in sections 3.3 and 4.3. The D-term conditions are stability

conditions for the D-brane.

The deformations of the cycle are sections of the generalized normal bundle N(Σ,F) =

(TM ⊕ T ∗
M )|Σ/T(Σ,F) [41]. Given a metric on the manifold, we can split TM = TΣ + T⊥

Σ . A
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section of the generalized normal bundle is of the form X⊥ = (v⊥, a), where v⊥ ∈ Γ(T⊥
Σ )

generates the deformations of the cycle Σ, while the deformations of the gauge field are

δF = da − PΣ[ιv⊥H]. The last term insures than under deformations of Σ, the Bianchi

identity dF = −PΣ[H] still holds. Since the tangent bundle is stable under the integrable

generalized complex structure J1, the latter induces a natural a complex structure on

N(Σ,F). This implies that the holomorphic generalized normal vectors, which are associated

to the four-dimensional chiral fields on the brane, are Z = (1 − iJ )X⊥.

For A-branes, J1 corresponds to the B-transformed of the symplectic structure J ,

given in (2.11). The 1-form part of the holomorphic generalized normal vectors is therefore

given by (1+ iBJ−1) (a + (B + iJ)v⊥). (The vector part is just −iJ−1(1+ iBJ−1)−1 times

the 1-form part). Furthermore, for supersymmetric configurations the H field is zero, and

therefore a represents pure gauge transformations of the world-volume field-strength. The

holomorphic fields on the brane, φi, are consequently given by

φi = [A + (B + iJ) v⊥]i , type IIA (2.35)

For B-branes J1 = J−, given in (2.7), and corresponds to an ordinary complex struc-

ture I. H is also zero for supersymmetric O5/O9 configurations. Here it is very easy to

see that the holomorphic generalized tangent vectors are given by the holomorphic normal

vectors and the holomorphic 1-form gauge field, namely

φi = [(1 + i IT )A]i , φi = [(1 − i I) v⊥]i , type IIB (2.36)

The geometrically induced µ-terms can be computed from the D-brane superpotential.

For a D-brane wrapping the cycle (Σ,F), the superpotential is [41],

W =

∫

B
PB[e3A−φΦ1] ∧ eF̃ (2.37)

where (B, F̃) is a chain whose boundaries are a fixed generalized cycle (Σf ,Ff ) and (Σ,F).

As we will see in sections 4.3, 3.3, the D-brane superpotential is holomorphic in the D-brane

fields (2.35) and (2.36).

3. Type IIB compactifications with O9/O5-planes

In this section we use the Kähler potential and bulk and brane superpotentials reviewed in

the previous section to find no-scale supersymmetry breaking vacua for type IIB compact-

ifications with O9 and O5-planes, as well as the geometrically induced µ-terms on D9 and

D5-branes. Backgrounds preserving this sort of supersymmetries have been described for

example in [45] under the label of type C solutions. Perhaps, the best known representative

is the background constructed by Chamseddine and Volkov [53], whose AdS/CFT inter-

pretation was given by Maldacena-Nuñez [54]. Here we will consider the possible N = 0∗

no-scale deformations of this kind of backgrounds.
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3.1 No-scale vacua

Let us write again the bulk superpotential for this type of compactification, given in (2.26),

W =

∫

Ω ∧ (F3 + ie−φdJ) (3.1)

In order to extract the maximum information from it, it is convenient to decompose it

into irreducible representations of the underlying SU(3)-structure. The complex 3-form

G = F3 + ie−φdJ , transforming in a 20 = 10 ⊕ 10 of SU(3), decomposes as

G = G+ + G− , ∗6G
± = ±iG± , (3.2)

and

G+ =
3

2

NJ

NΩ
G+

(1)Ω + G+
(3) ∧ J + G+

(6) ,

G− =
3

2

NJ

NΩ
G−

(1)Ω + G−
(3) ∧ J + G−

(6) , (3.3)

with G±
(1) a complex zero form in the 1 of SU(3), G+

(3) (G−
(3)) a complex (0,1)-form ((1,0)-

form) in the 3̄ (3), and G+
(6) (G−

(6)) a complex primitive (2,1)-form ((1,2)-form) in the 6

(6̄). We summarize in appendix B the different representations and forms arising in the

decomposition of G.

As already pointed out in section 2.1.1, on an SU(3)-structure manifold there are

no globally defined 1-forms. G±
(3) and W5, laying in topologically trivial representations,

encode information relative to the backreaction of the fluxes and branes, and in the probe

limit (A → 0) F3 ∧ J = W4 = W5 = 0. For the moment we concentrate on this limit, and

latter on we will extend the solution to the full one with finite warping.

Plugging (3.3) into (3.1), we get

W =
3

2

NJ

NΩ

∫

G+
(1)Ω ∧ Ω = 12iNJG+

(1) . (3.4)

For purely imaginary self-dual (ISD) fluxes, which we will see is a required condition,

G+
(1) = e−φW1. A non-vanishing gravitino mass therefore generically requires the torsion

class W1 to be non-vanishing. For vacua with spontaneously broken supersymmetry, the

generalized almost complex structure is thus not integrable.

For simplicity, in what follows we assume b
(1,1)
− = 0.5 The moduli space consists in the

complex structure moduli, Uk, k = 1, . . . b
(2,1)
+ , the complexified Kähler deformations, T a,

defined from the expansion of the form in (2.19), which in this case is

Π = C2 + ie−φJ = iT aωa , a = 1, . . . , b
(1,1)
+ , (3.5)

5b
(1,1)
− is the number of odd (1,1) forms in the expansion in “light modes” (for more details, see [7 – 9]) In

the Calabi-Yau case, this would be the number of odd harmonic (1,1)-forms. For b
(1,1)
− 6= 0, the expansion

in moduli gets slightly more complicated (see [55]). We do not give it since the no-scale condition needs

b
(1,1)
− = 0.
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and the axio-dilaton moduli, S = e−φNJ + iCµν . In terms of these, the Kähler poten-

tial (2.25) splits as

KΩ = −log[8NΩ] , KJ = −log[8e−3φNJ ] , KS = −log(S + S∗) , (3.6)

where NΩ and e−3φNJ should be understood as functions of Uk and T a respectively.

Let us compute the F-terms coming from (3.1). These are proportional to the covariant

derivatives, DkW ≡ ∂kW + W∂kK, with respect to the above moduli,

DUkW = −
∫

χk ∧ G−
(6) , (3.7)

DT aW = 12ieφG+
(1),aNJ , (3.8)

DSW = KSW , (3.9)

where the set of primitive (2, 1) forms χk is defined through,

χk ≡ ∂UkNΩ

NΩ
Ω − ∂UkΩ , (3.10)

and we have expanded G(1)NJ as

G(1)NJ = (G(1),aNa + G(1)NJ,a)T
a + F (1)NJ , (3.11)

with F (1) the scalar component of the F3 background, as defined in (B.4). For a purely ISD

background, G+
(1),a = e−φ∂T aW1. In what follows we define W1,a ≡ ∂T aW1, NJ,a ≡ ∂T aNJ

and NΩ,k ≡ ∂UkNΩ to simplify the notation.

For N = 1 supersymmetric vacua the F-terms have to vanish, and this requires

W1 = F(1) = 0 , (3.12)

W3 = −eφ ∗6 F(6) , (3.13)

in agreement with the conditions coming from (2.15).

We may think about relaxing these conditions in order to obtain no-scale solutions

with spontaneously broken supersymmetry. For that aim, as it will be clear below, it is

convenient to take the internal manifold to be the fibration of a complex 2-cycle Σ2 over a

four dimensional base B. The Kähler form splits accordingly,

J = JB + JΣ2 , (3.14)

with JB ∧ JB ∧ JΣ2 = 2NJ . In general, the 2-cycle may not be trivially fibered over

the base B, which in terms of torsion classes means dJΣ2 6= 0. In addition, whenever

compatible with the Σ2 fibration, the base manifold itself may have non-trivial intrinsic

torsion, dJB 6= 0, as long as dJB ∧ Ω = 0. This ensures that the superpotential does not

depend on the Kähler moduli of the base, T ã.

– 12 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
7

Taking a non-vanishing G+
(1), but independent of the Kähler moduli of the fiber, T b,

leads to

DSW = KSW , (3.15)

DUkW = −
∫

χk ∧ G−
(6) , (3.16)

DT aW =

{

KT ãW for T ã

0 for T b
. (3.17)

Therefore, imposing DUkW = 0, the negative piece of the scalar potential is exactly can-

celled by the non-vanishing F-terms, and we get a positive definite no-scale potential of

the form (2.31), where the sum runs over i = T b, Uk.

In terms of the torsion classes and the 3-form RR background, the above conditions

for a no-scale supersymmetry breaking vacuum read,

W1 = eφF(1) , (3.18)

W3 = −eφ ∗6 F(6) , (3.19)

where to get the first equation we have used (3.11) and the fact that ∂ãW = 0 implies

NJ,ãG
+
(1) = −NJG+

(1),ã. G is therefore a purely ISD form.

Furthermore, W2 will generically be different from zero. Indeed, for G purely ISD, we

can reexpress the superpotential as,

W = 2ie−φ

∫

Ω ∧ dJ = −2ie−φ

∫

dΩ ∧ J . (3.20)

Decomposing J as in (3.14), taking T ã∂ãW = 0 and using W2 ∧ J ∧ J = 0, we obtain

2W1JB ∧ JB ∧ JΣ2 −W2 ∧ JB ∧ JΣ2 = 0 . (3.21)

This completely determines W2 in terms of W1, resulting in,

W2 = 2W1(JB − 2JΣ2) . (3.22)

Some comments are in order. First, notice that the supersymmetry breaking is medi-

ated through F-terms associated to the moduli in the expansion of Π (S and T ã). Those

descend from N = 2 hypermultiplets spanning a quaternionic manifold. The same situa-

tion occurs in conventional Calabi-Yau compactifications of type IIB with O3-planes and

3-form fluxes. More concretely, when Σ2 is a 2-torus and dJB = 0, both kind of setups can

be related by two T-dualities on Σ2.
6 By a slight abuse of language, we will denote this type

of breaking, characterized by an ISD 3-form (or more generically by an ISD polyform) with

a non-vanishing SU(3) singlet component, as “no-scale quaternionic breaking”. Further

examples of this type of breaking will appear in section 4.1.1 for type IIA orientifolds.

Finally, let us comment on the warp factor. We have argued that the superpotential

for SU(3)-structure compactifications does not contain the effects of the warping, as these

6For a supersymmetric version of this setup see [56].
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are encoded in topologically trivial representations. Rather, they appear as corrections to

the Kähler potential of the 4d effective theory [57]. Since the non-supersymmetric piece

of the background is exclusively contained in the SU(3) invariant term, as can be read

from (3.18), we do not expect this deformation to mix with quantities transforming in

vector representations. The latter should therefore satisfy the same relations than in the

supersymmetric case, given by (2.15),

2iW∗
5 = −eφF(3) = −2i∂̄A = −i∂φ . (3.23)

Further support to this idea comes from the analysis of the RR tadpoles. The ex-

perience with ordinary flux compactifications and open/closed string duality tells us that

the backreacted geometry can be alternatively characterized by the induced charges in the

bulk. The relevant piece of the ten dimensional action is [58],

∫

C6∧dF3 = −i

∫

C6∧dG =

∫

C6∧
[

3

2

NJe−φ

NΩ

(

|W1|2J ∧ J+W1W2 ∧ J
)

+e−φd ∗6 W3

]

=
9

2

NJe−φ|W1|2
NΩ

∫

C6 ∧ JB ∧ JB + e−φ

∫

C6 ∧ d ∗6 W3 , (3.24)

where we have made use of (3.22) for the last equality. The intrinsic torsion therefore

induces a non-vanishing charge of D5-brane along Σ2, and the backreacted geometry is

expected to lay within the same class than the one produced by a stack of D5-branes

wrapping Σ2. The latter indeed can be shown to satisfy equation (3.23) [59, 60].

For the sake of clarity, let us now discuss a particular example of no-scale quaternionic

breaking with O9/O5-planes.

3.2 Example: K3 × T 2 fibration

Consider a compact nilmanifold with tangent 1-forms ei satisfying the equations,

de1 = de2 = de4 = de5 = 0 , de6 = e4 ∧ e5 ,

de3 = e4 ∧ e5 − e1 ∧ e5 + e2 ∧ e4 . (3.25)

This corresponds to a T 2 fibration over a factorizable T 4 spanned by the coordinates x1,

x2, x4 and x5. Notice that this set of equations is invariant under a Z2 discrete symmetry

reversing the coordinates of the base. We take the orientifold generated by the combined

action ΩP Z2, leading to a set of O5-planes with total charge of 16 (in D5-brane units)

wrapping the T 2 fiber. This construction can be understood as the orbifold limit of a

K3 × T 2 fibration (see [61] for related constructions).

The internal metric in (2.1) is given by

ds6 =
e−2A

u

(

t̃1|e1 + iue4|2 + t̃2|e2 + iue5|2
)

+
e2A

u
t|e3 + iue6|2 , (3.26)

with t̃i, t the real parts of, respectively, the Kähler moduli of the base and the fiber7 and u

is the overall complex structure modulus, that is fixed to a real value in the solution (i.e.,

7We will always denote the real part of a field with the same letter in lowercase.
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the complex structure axions are zero). Here, ei = dxi for i = 1, 2, 4, 5 and

e3 = dx3 + x4dx5 − x1dx5 − x4dx2 , e6 = dx6 + x4dx5 . (3.27)

J and Ω are given by

J = JB + JT 2 = −e−2A(t̃1e
1 ∧ e4 + t̃2e

2 ∧ e5) − e2At e3 ∧ e6 , (3.28)

Ω = e−A(e1 + iue4) ∧ (e2 + iue5) ∧ (e3 + iue6) . (3.29)

Notice in particular that dJB = 0, as corresponds to a CY2 manifold, and the model can

be related to an ordinary T 6 orientifold with O3-planes and ISD 3-form flux by T-dualizing

along x3 and x6.

From (3.28) and (3.29) we extract the torsion classes,

W1 = − e3A

6t̃1t̃2
(3iu + 1) , (3.30)

W2 = − e3A

3t̃1t̃2
(3iu + 1)(JB − 2JT 2) , (3.31)

W3 =
e2A

8

t

u3
(u + i)(z1 ∧ z2 ∧ z̄3 + z1 ∧ z̄2 ∧ z3 + z̄1 ∧ z2 ∧ z3) + c.c (3.32)

− 2dA ∧ (JB − JT 2) , (3.33)

W4 = 0 , (3.34)

W5 = −∂A , (3.35)

with za ≡ ea + iuea+3 the holomorphic 1-forms, and we are defining NJ and NΩ by (2.3)

in the limit A → 0. Observe that W1 does not depend on t, so the manifold has a suitable

structure to support a no-scale solution of the type described in the previous section. For

that, eqs. (3.18), (3.19) and (3.23) dictate the exact expression of the 3-form background,

gsF3 = − t

8u3
[(1−3iu)Ω+(1−iu)(z1∧z2∧z̄3+z1∧z̄2∧z3+z̄1∧z2∧z3)]+e2A∗4d(e−4A)+c.c

(3.36)

with ∗4 the hodge star in the base, and gs the VEV of eφ, i.e. we use eφ = gse
2A. Supersym-

metry is broken by the F-terms of S, T1 and T2, proportional to W1, and the cosmological

constant vanishes at tree level, accordingly to the no-scale structure. Finally, the Bianchi

identity for F3 determines the charge of D5T 2-brane induced by the flux,

dF3 =
e4A

2gst̃1t̃2

(

t

u3
(1 + 3u2) + e−2A∇2

B(e−4A)

)

JB ∧ JB . (3.37)

3.3 Geometrically induced µ-terms on twisted tori in IIB

In the above compactifications, besides the flux, there are generically also D5 and D9-

branes wrapping respectively complex 2-cycles and the whole space. These are required to

cancel the global negative RR charge induced by the orientifold planes, whenever it is not

cancelled completely by the flux. The deformations of these branes are parameterized by

the holomorphic normal vectors, φi, and the holomorphic 1-form gauge fields, φi, given in
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equation (2.36). In a realistic compactification these would be identified with the super-

symmetric partners of the matter fields, i.e. with the squarks and sleptons. The pattern of

soft supersymmetry breaking terms can be thus determined by the F-terms together with

the possible µ-terms for φi and φi.

The superpotential (2.37) constitutes a simple way for computing the µ-terms in a given

class of compactification. For the particular case of D9 and D5-branes, it reduces to [41],

WD9 =

∫

Ω ∧ ω3 , (3.38)

WD5 =
∑

i

∫

Bi

Ω , (3.39)

where ω3 is the Chern-Simons 3-form,

ω3 = Tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

, (3.40)

and {Bi} the set of 3-chains generated by all possible infinitesimal deformations of the

generalized complex 2-cycle which the D5-brane wraps. Alternatively, (3.38) can be

anticipated by arguments of anomaly cancellation, since coupling 10d super Yang-Mills to

the bulk supergravity [62 – 64] requires F3 → F3 + ω3 in (3.1), giving rise to (3.38).

Performing the integral (3.39) requires a precise knowledge of the embedding of the

D5-brane in the geometry of the internal manifold. Moreover, the zero modes of φi and φi

may have non-constant profiles on the compact directions. For all this, we restrict here to

the particular case of twisted tori.

A twisted torus is an homogeneous parallelizable manifold with a set of globally defined

1-forms ea. These are not closed, but satisfy the Maurer-Cartan equations

dea =
1

2
fa

bce
b ∧ ec , (3.41)

for constant fa
bc. Imposing d2ea = 0, requires the constants to satisfy Jacobi identities

fa
[bcf

g
d]a = 0 . (3.42)

fa
bc are therefore structure constants of a Lie algebra of a group G. The twisted torus is

the manifold G/Γ, where Γ is a set of discrete identifications. For fa
bc = 0, these are of the

form xa ∼= xa + ka for some constants ka, while in the case of nonzero structure constants

some of these identifications are “twisted” (for example, if f3
12 = h and the rest are zero,

then one can identify x1 ∼= x1 + k1, x2 ∼= x2 + k2, x3 ∼= x3 − k1hx2).

Since twisted tori are manifolds of trivial structure, as they are parallelizable, one can

globally define many SU(3) structures on them. They are defined by the following pairs of

Ω and J

Ω = z1 ∧ z2 ∧ z3 , J = jmn̄zm ∧ z̄n , (3.43)

where jmn̄ = −(jnm̄)∗ and in the basis of holomorphic 1-forms, zm ≡ em + iUm
nen+3,

m,n = 1, 2, 3, the metric reads gmn̄ = −ijmn̄. For completeness, we give the torsion classes

in terms of the structure constants in appendix C.
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D9 D51 D52 D53

u1µ11 f̃ 1̄
2̄3̄

0 f̃3
12̄

f̃2
3̄1

u2µ22 f̃ 2̄
3̄1̄ f̃3

1̄2 0 f̃1
23̄

u3µ33 f̃ 3̄
1̄2̄

f̃2
31̄

f̃1
2̄3

0

Table 1: Supersymmetric torsion induced µ-terms for D9 and D5i branes wrapping the i-th T 2 in

a factorizable twisted torus.

A stack of D9-branes wrapping the entire volume of the twisted torus will contain

three complex Cartan moduli φm = Am + iUm
nAn+3. From (3.38) one may extract then

the µ-terms for the light modes,

Wµ,D9 =
iNΩ

2
gmōgpq̄ǫ

s̄r̄ōf q̄
s̄r̄φ

mφp , (3.44)

where φm = gmn̄φn̄ and ǫ1̄2̄3̄ = ǫ123 = −i.

Similarly, for a stack of D5-branes wrapping the complex 2-cycle Π = aī[z
i ∧ z̄j], there

are two normal moduli φm, m = 1, 2, plus a single Cartan moduli φ. Performing a change

of basis, {z1, z2, z3} → {z̃1, z̃2, z̃3}, such that in the new basis Π = [z̃3 ∧ ¯̃z3], these moduli

can be identified respectively with the normal coordinates z̃1 and z̃2 and with the gauge

bundle along z̃3.

From (3.39) then we extract,

Wµ,D5 =
i

2
ǫ3jkf

k
3̄mφmφj , (3.45)

where the indices now refer to the new complex coordinates z̃i.

The complexified structure constants defining the topology of the twisted torus can

be therefore arranged according to the holomorphicity/antiholomorphicity of their indices.

Thus, fa
bc̄ gives rise to µ-terms for geometric moduli of D5-branes, whereas fa

bc corresponds

to µ-terms for the Cartan moduli of D9-branes. On top of this, fa
b̄c̄

controls the amount of

supersymmetry breaking, as derived from (C.7).

Notice that the superpotentials (3.44) and (3.45) involve structure constants with

complex indices. In writing them in terms of the ones with real indices, non-holomorphic

pieces in the complex structure moduli appear. Strictly speaking, only the holomorphic

terms correspond to infinitesimal supersymmetric deformations of the calibrated branes [41,

46], whereas the non-holomorphic pieces can be generically traced back to φiφj couplings

in the Kähler potential [38], giving effective contributions through the Giudice-Masiero

mechanism [65] in vacua with supersymmetry spontaneously broken. We will come back

to this issue in section 5. Besides, the superpotential (3.39) contains also antiholomorphic

terms in the brane moduli, proportional to the structure constants f q
s̄r̄. These appear

when the bulk almost complex structure is not integrable, and correspond again to non

supersymmetric deformations of the branes. Therefore, these terms have to be discarded.

In order to match the result for the D7-brane effective µ-term [35, 38] in vacua where

a T-dual description is available, the matter fields have to be rescaled accordingly. We
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summarize in table 1 the torsion induced µ-terms for the different types of D-branes present

in a compactification on a factorizable T 6, where the structure constants have one leg on

each 2-torus. For convenience, we have introduced the “rescaled” structure constants, f̃ I
JK ,

defined as

f̃ I
JK ≡ 2uJuK

tI
f I

JK . (3.46)

In terms of these, the normalized µ-terms for factorizable twisted tori are

Wµ,D9 =
i

2
ǫsrpu

−1
q f̃ q̄

s̄r̄(φ
p)2 , Wµ,D5p =

i

2
ǫpjku

−1
j f̃k

p̄m(φm)2 . (3.47)

Notice that the spectrum is much richer than for type IIB orientifolds with O3-planes

and 3-form fluxes, where only the geometric moduli of the D7-branes can be stabilized

by the fluxes [35, 66 – 68]. Concretely both the Cartan moduli of the D9-branes and the

geometric moduli of the D5-branes can be lifted by the intrinsic torsion. A simple intuitive

example is provided by a D9-brane wrapping the product S3×T 3, with holomorphic vectors

zm = em + iêm. The left-invariant 1-forms of the 3-sphere satisfy

dem =
1

2
ǫmnoe

n ∧ eo , (3.48)

whereas the ones in the 3-torus are closed, dêi = 0. Since h(1,0)[S3 × T 3] = 0, we do

not expect 4d massless zero modes coming from the gauge bundle. In fact, in terms of

holomorphic vectors one has from (3.48), f 1̄
2̄3̄

= f 2̄
3̄1̄

= f 3̄
1̄2̄

= 1/4, and therefore all the

scalars transforming in the adjoint are indeed lifted from the massless spectrum by the

torsion induced µ-terms, leading to pure N = 1 super Yang-Mills in 4d.

4. Type IIA compactifications with O6-planes

Type IIA compactifications with O6-planes have been one of the preferred setups for D-

brane model building during the last decade (for a recent review see e.g. [69]). The easiness

for accommodating chiral fermions in bifundamental representations without breaking N =

1 supersymmetry, makes it the perfect framework for embedding realistic gauge theories in

string theory. Recently, the possibility of adding closed string fluxes to type IIA orientifold

compactifications has been also considered [70 – 72, 13], resulting in the (perturbative)

stabilization of all the closed string (untwisted) moduli of the compactification [73, 15,

74]. In this section we construct no-scale supersymmetry breaking solutions of type IIA

compactified on orientifolds of SU(3)-structure manifolds. We will see that the resulting

possibilities turn out to be richer than for type IIB orientifold compactifications.

4.1 No scale vacua

The superpotential (2.22) specialized to IIA compactifications with O6 planes is

W =

∫

〈e−iJ , F + iCRe dHΩ〉 ≡
∫

〈e−iJ , G〉 , (4.1)
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where the pairing 〈, 〉 is defined in (2.21), F in (2.17)–(2.18) and C is the compensator

field defined below (2.24). Similarly to the type IIB case, we can decompose the “flux”

G = F + iCRe dHΩ into ISD and IASD parts under the combined action ∗λ,

G = G+ + G− , ∗λ[G±] = ±iG± . (4.2)

G± can be decomposed in representations of SU(3) in the following way [18]

G+ =
NΩ

NJ
G+

(1)e
iJ + G+

mnγme−iJγn + G+
mγm Ω̄3 + G̃+

mΩ3γ
m ,

G− =
NΩ

NJ
G−

(1)e
−iJ + G−

mnγmeiJγn + G−
mγmΩ3 + G̃−

mΩ̄3γ
m , (4.3)

where

γmΦ± = (dxm ∧ +gmnιn)Φ± , Φ±γm = ±(dxm ∧ −gmnιn)Φ± (4.4)

for Φ+(Φ−) any even (odd) form. The first terms in these expressions are singlets of the

SU(3) structure, the second are in the 8+1, while the last two are respectively in the 3 and

3̄ representations. Each term can be obtained by an appropriate integral. For example,

G+
(1) =

i

8NΩ

∫

〈e−iJ , G〉 , G+
mn =

i

32NJ
JmpJnq

∫

〈γpeiJγq, G〉 . (4.5)

We give in appendix B the expressions for the other components. Using this decomposition,

the superpotential (4.1) is

W = −8iNΩG+
(1) (4.6)

In type IIA compactifications with O6-planes [72, 8], the moduli are the complexified Kähler

deformations T a from the expansion

B + iJ = i T a ωa , a = 1, . . . , b2
− (4.7)

and the combination of axions and complex-structure deformations encoded in the form Π

in (2.19), namely

Π = C3 + iCReΩ = (ξK + iCRe ZK)αK − (ξ̃λ + iCReFλ)βλ ≡ i(NKαK − Uλβλ) ,

K = 0, . . . , h , λ = h + 1, . . . , b3
+ − 1 (4.8)

where the integer h is basis dependent, (αK , βλ) ≡ (α0, αk, βλ) are even 3-forms, paired

symplectically with the odd 3-forms (αλ, βK) ∈ ∆3
−, and Fλ the derivative of the prepo-

tential with respect to Zλ.

The Kähler potential for the complex structure, Kähler and axion-dilaton S is given

in (2.20), and reads in this case

KJ = −log[8NJ ] , KΩ,S = −2log[C2NΩ] , (4.9)

where NJ and C2NΩ should be written in terms of the moduli T a, NK and Uλ. The

orientifold projection selects a privileged choice of the symplectic basis in (4.8) for which

h = 0, i.e.

Π = i(N0α0 − Uλβλ) , (4.10)
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and N0 = S = CReZ0 − iξ0. In the large complex structure limit,8 F = 1
Z0 kabcZ

aZbZc,

and the Kähler potential for S and Uλ, λ = 1 . . . b3
+ − 1, splits into

KΩ,S = −log(S + S∗) − 2log(KUλ
) , (4.11)

where KUλ
= s3/2καβρτ

ατβτρ and τλ ≡ CRe Zλ

CRe Z0 should be solved as a function of Uλ. The

last piece is of the no-scale form, i.e. it satisfies (2.30) for {ı̃} = {Uλ}.

4.1.1 No-scale quaternionic breaking

The no-scale structure of the last piece of (4.11) tells us that if the superpotential does

not depend on the complex structure deformations, i.e. ∂Uλ
W = 0, we obtain a no-scale

supersymmetry breaking vacua in the large complex structure limit by demanding DSW =

DT aW = 0. The moduli whose F-terms are non-zero are the ones in Π, which descend

from N = 2 hypermultiplets spanning a quaternionic manifold. Therefore this case belongs

to the same class of quaternionic breaking solutions discussed in the previous section, for

which G is an ISD (poly)-form. In order to make this statement more precise, let us

compute the F-terms corresponding to (4.1). These result in9

DT aW =
1

NJ

∫

(

NJ〈∂T ae−iJ , G〉 − NJ,T a〈e−iJ , G〉
)

= −4NJG−
mnJmpJqn(ωa)pq , (4.12)

DSW =

∫

〈e−iJ , G∗〉 = −8iNΩ(G−
(1))

∗ . (4.13)

DUλ
W = W∂Uλ

K , (4.14)

where we have already imposed ∂Uλ
W = 0 to compute DSW . We therefore get a no-scale

vacua if the following conditions are satisfied

G−
mn = 0 , G−

(1) = 0 ,

∫

H ∧ βλ =

∫

dJ ∧ βλ = 0 , (4.15)

8This setup is mirror to large volume compactifications of IIB with O3/O7 planes in the case b2
− = 0.

We thank T. Grimm for pointing this out to us.
9The derivation of (4.12) deserves some explanation. First, in order to take the derivative with respect

to the Kähler moduli T a, defined in (4.7), we have reexpressed G as,

G = F + iCRe dHΩ = eB[F̄ + dH̄(e−BΠ)] ,

with Π given in (4.10). Since 〈e−BΦ, e−BΨ〉 = 〈Φ, Ψ〉 for any Φ and Ψ, we can freely wedge both sides of

the Mukai pairing in (4.1) by e−B. Moreover, to get the last equality we have expressed also

DTaW = −i

Z

〈ωae−iJ , G〉 + i
NΩ

NJ

Z

〈ωae−iJ , eiJ 〉G+
(1) .

Using (4.4) then we can write

ωaΦ+ =
1

2
(ωa)mndxm ∧ dxnΦ+ =

1

4
[γm, {γn, Φ+}] ,

and finally, using the bispinor expression for e−iJ given in (2.8), the relation between the Mukai pair-

ing and the norm of bispinors (A.3), the decomposition (4.3) and the bilinears (A.2), we arrive to the

expression (4.12).
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where the last two are required to get ∂Uλ
W = 0. These conditions imply that all NS

fluxes (H3 plus torsion) are determined in terms of the dilaton, the RR singlet fluxes and

F
(8)
2 (see definitions in appendix B),

ReW1 =
1

6
eφ(4)N 1/2

Ω F
(1)
2 , H(1) =

1

3

NJ

NΩ
F0 , F

(1)
4 = F

(1)
6 = 0 ,

ImW2 = 0 , ReW2 ∧ J = −eφ(4)N 1/2
Ω ∗ F

(8)
2 , F

(8)
4 = 0 ,

Hλ = −1

2

NJ

N 1/2
Ω

eφ(4)
F0 Im Zλ , H0 =

1

Re Z0
Hλ Re (Fλ) ,

Wλ
3 = −1

4

NJ

NΩ
F

(1)
2 Im Zλ , (W3)0 =

1

Re Z0
Wλ

3 Re (Fλ) , (4.16)

where we have expanded H(6) = Hλαλ + H0β
0, and similarly for W3. Notice that the

difference with respect to the supersymmetric solution is precisely the singlets (while the

8 component has the same form as the supersymmetric one, analogously to the 6 in type

IIB). Moreover, following the same arguments as in type IIB, we expect the warp factor to

behave as in the supersymmetric solution, namely

2iW∗
5 = −eφF

(3)
2 = 2i∂̄A =

2

3
i∂φ , (4.17)

and W4 = 0, so from (4.16) and (4.17) we see that G is indeed an ISD form.

Inspired by the type IIB no-scale solutions with O5-planes of previous sections, we

may also consider a slightly different class of solutions, on which KUλ
splits as

KUλ
= − log(U + U∗) + K ′

Uλ̃
, K ′λ̃ ¯̃ρK ′

λ̃
K ′

¯̃ρ = 2 . (4.18)

This will be the case for example for twisted tori, where U is made out of the real complex

structure of one of the T 2 and its axion partner. A no scale solution arises if ∂SW =

∂Uλ̃
W = 0, for Uλ̃ 6= U , and DT aW = DUW = 0. Notice that the F-terms in this case read,

DUW =

∫

〈e−iJ , G∗〉=−8iNΩ(G−
(1))

∗ , DSW =W∂SK , DUλ̃
W =W∂Uλ̃

K (Uλ̃ 6= U) ,

(4.19)

with DT aW still given by the first line of (4.12). Thus, we get back again the condi-

tions (4.15), with λ now running over all Uλ̃, and H ∧ α0 = dJ ∧ α0 = 0. The breaking is

again mediated by the N = 1 scalars descending from the N = 2 hypermultiplets, the only

difference being the particular directions of the quaternionic space which enter the breaking.

4.1.2 No-scale mixed breaking: Scherk-Schwarz breaking

Apart from the no-scale solutions with the supersymmetry spontaneously broken by moduli

in Π (complex structure and dilaton), in geometric type IIA compactifications with SU(3)

structure there is another class of solutions on which the breaking involves also F-terms

associated to the moduli in Φ1 = Φ+, descending from N = 2 vector multiplets. These

solutions are therefore not dual to the quaternionic breaking solutions, and we believe

their type IIB counterparts correspond to non-geometric compactifications. The existence
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of these solutions was noticed in [15] from the four dimensional point of view, however

the ten dimensional construction was missing. Here, we will show that they are related to

non-supersymmetric Scherk-Schwarz compactifications [39].

Indeed, consider the internal manifold to be a trivial T 2 fibration over a base B, i.e.

M = T 2 ×B, so that the Kähler form is decomposed as J = JT 2 + JB, with dJT 2 = 0, and

KUλ
satisfying (4.18). Let us take vanishing fluxes, F=H=0, and therefore the setup is of

Scherk-Schwarz type. The superpotential becomes

W =

∫

〈e−iJB , iCRe dΩ〉 . (4.20)

Since it is independent of the Kähler modulus of the T 2 fibration, T̃ , it leads to a no-scale

structure when JB ∧ ∂Uλ
(dΩ) = 0, for Uλ 6= Ũ . Notice also that Re G = 0, so G is a

pure imaginary (poly)-form and the IASD SU(3) components are therefore automatically

determined by the ISD components, G+
(1) = G−

(1) and G+
mn = (G−

mn)T .

Computing the F-terms,

DSW =
i

2

∫
〈

e−iJB , d

(

α0 +
ũ

s
βŨ

)〉

, (4.21)

DT aW =

{

W∂T̃K for T a = T̃

32iNJG−
mnJmp

B Jqn
B (ωa)pq for T a 6= T̃

, (4.22)

DUλ
W =

{

W∂Uλ
K for Uλ 6= Ũ

− s
ũDSW for Uλ = Ũ

, (4.23)

we get that in order to have DT aW = DSW = 0, for T a 6= T̃ , G±
mn has to vanish along the

directions of B and,
∫

JB ∧ d

(

α0 +
ũ

s
βŨ

)

= 0 . (4.24)

Notice that in some sense S and Ũ behave as a single modulus of the compactification.

This will be made more explicit in a concrete example in next section.

4.2 Examples

4.2.1 No-scale quaternionic breaking

We consider here a representative of the first class of no-scale vacua discussed above, i.e.

those on which the supersymmetry is spontaneously broken by F-terms associated exclu-

sively to the N = 1 fields descending from N = 2 hypermultiplets (S and Uλ). These IIA

solutions are mirror to the usual no-scale solutions of type IIB with O3-planes, or T-dual

to the ones with O5-planes discussed in previous sections. This particular example corre-

sponds to the ten dimensional realization of one of the no-scale vacua considered in [15].

We take the internal manifold to be a compact S1 fibration over T 5, with O6-planes

wrapping x1, x2, x3 and

de1 = de2 = de4 = de5 = de6 = 0 , de3 = −e4 ∧ e5 . (4.25)
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To avoid cluttering, let us first give the solution in the limit A → 0 and then comment on

how to introduce the warp factor. Choosing,10

Ω = (e1 + iτ1e4)∧(e2 + iτ2e5)∧(e3 + iτ3e6) , J = −t1e
1∧e4− t2e

2∧e5− t3e
3∧e6 , (4.26)

we get, d(Re Ω) = e1 ∧ e4 ∧ e2 ∧ e5. The torsion classes are

W1 =
1

6t1t2
, W2 =

1

3t1t2

(

J + i
3t3
2τ3

z3 ∧ z̄3

)

,

W3 = − it3
8τ1τ2τ3

(z1 ∧ z2 ∧ z̄3 + z1 ∧ z̄2 ∧ z3 + z̄1 ∧ z2 ∧ z3) + c.c. (4.27)

where za = ea + iτaea+3. On top of this, we parameterize a possible expectation value of

the NSNS 3-form as,

H = m
t1t2t3

s
e4 ∧ e5 ∧ e6 . (4.28)

This, together with the ISD condition, determines G as,

G = −m − st3
t1t2

e3 ∧ e6 + ise1 ∧ e4 ∧ e2 ∧ e5 + imt1t2t3e
1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 , (4.29)

from which we read the expectation values of the RR field strengths,

F0 = −m , F2 = − st3
t1t2

e3 ∧ e6 , F4 = F6 = 0 , (4.30)

and the Bianchi identity,

dF2 =
st3
t1t2

e4 ∧ e5 ∧ e6 = δD6/O6 . (4.31)

In terms of SU(3) representations, the only non-vanishing components of G are,

G+
(1) = − t3(mt1t2 + is)

4τ1τ2τ3
, G+

mn̄ =
1

4

τ1τ2τ3

t1t2t3







(G+
(1))

∗ t1
τ1 0 0

0 (G+
(1))

∗ t2
τ2 0

0 0 G+
(1)

t3
τ3






(4.32)

Notice in particular the independence of NΩG+
(1) (i.e., of the superpotential) on the complex

structure moduli, accordingly with the no-scale structure.

One can make contact with the results of [15] by decomposing the field-strengths

between the Chern-Simons couplings and the background field. Indeed, from (2.18) we see

that the VEV’s for the axionic parts of the Kähler moduli and S are fixed as,

Im Ta =
1

m

∫

(

F2 − F 2

)

∧ ω̃a , Im S =

∫ (

F 4 +
1

2m
F 2 ∧ F 2

)

∧ e3 ∧ e6 , (4.33)

in agreement with the results of [15].

10In terms of N = 1 moduli, CRe Ω = e
−φ(4)

√
τ1τ2τ3

(e1 ∧ e2 ∧ e3 − τ 1τ 2e4 ∧ e5 ∧ e3 − τ 1τ 3e4 ∧ e2 ∧ e6 − τ 2τ 3e1 ∧

e5 ∧ e6) ≡ se1 ∧ e2 ∧ e3 − u3e
4 ∧ e5 ∧ e3 − u2e

4 ∧ e2 ∧ e6 − u1e
1 ∧ e5 ∧ e6.
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As argued in the previous sections, the warp factor behaves like in the supersym-

metric case, i.e. the warped solution is obtained by making the replacement ea → eAea,

ea+3 → e−Aea+3, a = 1, 2, 3, in (4.26). The torsion classes W1, W2 and W3 in (4.27),

as well as H in (4.28) get multiplied by a factor of e3A. Additionally, W2 gets a term

of the form −2iǫijk
τ i

ti
∂ı̄A z̄j ∧ zk, and F2 a term s eA ∗3 d(e−4A) (where ∗3 is the Hodge

dual on the 3-dimensional subspace 456). Besides, ∂φ = 3W5 = 3∂A, as expected

from (4.17) while W4 is zero. Finally, the Bianchi identity (4.31) gets an additional term

−2se−2A∇2(e−4A)e4 ∧ e5 ∧ e6.

4.2.2 No scale mixed breaking

Here we consider a representative example of this class of solutions, based on an algebraic

solvmanifold with,

de1 = de4 = 0 ,

de2 = e6 ∧ e4 , de5 = e3 ∧ e4 ,

de3 = e4 ∧ e5 , de6 = e4 ∧ e2 , (4.34)

As shown in [47], this solvmanifold admits a flat metric,11 a lattice Γ such that the quotient

G/Γ is compact, and O6-planes spanning the directions 123, 156, 426, 453, 125 and/or 136.

The moduli space is composed of two Kähler moduli, T1 and T2, two complex structure

moduli, U2 and U3, and a single axio-dilaton S.12 In terms of these, J and Re Ω read (again

in the limit A → 0)

J = −t1e
1 ∧ e4 − t2(e

2 ∧ e5 + e3 ∧ e6) ,

ReΩ = e1 ∧ e2 ∧ e3 − e1 ∧ e5 ∧ e6 − e4 ∧
(u2

s
e2 ∧ e6 +

u3

s
e5 ∧ e3

)

, (4.35)

and hence, for H and all the RR forms vanishing, G is given by

G = −2ise1 ∧ e4 ∧ (e2 ∧ e5 + e3 ∧ e6) . (4.36)

In terms of SU(3) components,

G+
(1) = G−

(1) =
ist2
2τ

, G+
mn̄ = G−

m̄n = − s

8t2τ







i 0 0

0 0 0

0 0 0






, (4.37)

with τ =
√

u2u3/s the complex structure parameter of the 2-torus spanned by e1 and e4.

Notice that NΩG(1) is independent of U2, U3 and T1. On the other hand, the F -terms

associated to S and T2 automatically vanish, thus leading to a no-scale structure with the

corresponding axions stabilized as,

Im S =

∫

F 4 ∧ (e2 ∧ e5 + e3 ∧ e6) , Im T2 =

∫

H ∧ e4 ∧ (e5 ∧ e6 − e2 ∧ e3) . (4.38)

11Changing the sign of f3
45 and f5

34, it admits also supersymmetric backgrounds without flux.
12The solution requires u1 = s (i.e. τ2τ3 = 1) and t2 = t3. The first condition guarantees that (4.24) is

satisfied, whereas the second one implies that G±
mn takes non-zero values only along the directions of e1

and e4.
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The torsion classes are

W1 = − 2

3t1t2
, W2 = − 2

3t1t2
[2t1e

1 ∧ e4 − t2(e
2 ∧ e5 + e3 ∧ e6)] ,

W3 =
i

2τ
t2z̄

1 ∧ z2 ∧ z3 + c.c. (4.39)

Note that this solution does not have RR flux or H. Therefore, the orientifold planes

are not needed to cancel tadpoles. However, without the orientifold projection the moduli

would be those of N = 2. We expect this background to be a no-scale supersymmetry

breaking solution also without the orientifolds, since the equations of motion should not

be sensible to the projection. In any case, if there are orientifold planes and consequently

D6-branes to cancel the tadpoles, but such that these are not on top of each other, the

warp factor should behave as in the previous example.

4.3 Geometrically induced µ-terms on twisted tori in IIA

In type IIA on SU(3) structure manifolds, Φ1,2 are given respectively by Φ+,− in (2.8).

θ+ = θ− − π/2, where the phase θ+ is a choice, and determines the location of the O6-

planes. Choosing θ− = π/2, the orientifold projection acts as σ(Ω) = Ω̄. Let us use real

1-forms Xi, Y ı̂, i, ı̂ = 1, 2, 3, where the orientifold projection acts as σ(Xi, Y ı̂) = (Xi,−Y ı̂).

The complex 1-forms Zi and the symplectic form are given by

Zi = Xi + i τ i
̂Y

̂ , Jc = B + iJ = −i Tî Xi ∧ Y ̂ (4.40)

where τ i
̂ are real, and Tî are complex Kähler moduli. These define an SU(3) structure

if the matrix Tτ−1 is symmetric, i.e Tî(τ
−1)̂k = Tk̂(τ

−1)̂i. In that case, B + iJ is (1,1)

with respect to the complex structure. A basis of 3-forms is given by

α0 = X1 ∧ X2 ∧ X3 , β0 = Y 1 ∧ Y 2 ∧ Y 3 .

αj
ı̂ =

1

2
ǫjklX

k ∧ X l ∧ Y ı̂ , βi
̂ = −1

2
ǫ̂k̂l̂Y

k̂ ∧ Y l̂ ∧ Xi . (4.41)

The holomorphic 3-form Ω is given in this basis by

Ω = α0 + iαj
ı̂τ j

ı̂ + βi
̂(cofτ)i

̂ − iβ0(det τ) , (4.42)

where

(cofτ)i
̂ = (det τ)τ−1,T =

1

2
ǫikmǫ̂p̂q̂τk

p̂τ
m

q̂ . (4.43)

A supersymmetric D6-brane has to satisfy the D-flatness condition (2.32), which reads in

this case

PΣ(Im Ω) = 0 . (4.44)

The cycles that satisfy it are Σ0, Σ̂
i, dual respectively to the even left invariant forms α0

and βi
̂. The F-flatness condition (2.33) implies

PΣ[J ] = 0 , F = 0 , (4.45)
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i.e. the branes wrap special Lagrangian submanifolds. The first condition is satisfied auto-

matically on the cycle Σ0, while for the cycles Σi
̂ they impose Tik̂ = Til̂ = 0, where k̂, l̂ 6= ̂.

This means that for a given i, there’s only one ̂ such that Σi
̂ is supersymmetric, namely

̂ is defined by the combination Tim̂ym̂. There are therefore in total four supersymmetric

cycles, Σ0 and Σi.

The superpotential (2.37) for a D6-brane wrapping (Σ,F) is

W =
1

4

∫

Bi

e3A−φ(F̃ − Jc)
2 (4.46)

For the cycle Σ0, dual to α0, Bi are chains dual to the forms X1 ∧X2 ∧X3 ∧ Y ̂. The

holomorphic brane fields are given in (2.35), and their superpotential is

WD60 =
1

4
ǫikl(Tkr̂f

r̂
ı̂l + Trı̂f

r
lk)Tîφ

ı̂φ̂ , φi = Ai − i Tîy
̂ ≡ Tîφ

̂ (4.47)

For the cycle Σi, dual to βi
̂ = −1

2 ǫ̂k̂l̂Y
k̂ ∧ Y l̂ ∧ Xi the superpotential is

WD6i
= − 1

2

(

Tpl̂f
p

k̂̂
+ 2Tp(k̂f

p

̂)l̂

)

Tî φ̂φ̂ − 1

2

(

Tpk̂f
p
ib + T(i|r̂f

r̂
b)k̂

)

Tal̂φ
bφa

+
1

2

(

−
(

Tar̂f
r̂
l̂k̂

+ Tpl̂f
p

k̂a

)

Tî +
(

Tir̂f
r̂
̂k̂

+ Tp(̂f
p

k̂)i

)

Tal̂

)

φ̂φa , (4.48)

where

φi = Ai − i Tîy
̂ ≡ Tîφ

̂ , φb̂ = Ab̂ − i Tb̂ax
a ≡ Tb̂aφ

a , (4.49)

a = {k, l}, b̂ = {k̂, l̂} and antisymmetrization in k̂, l̂ is understood.

Similarly to the type IIB case, (4.46) contains also terms that are not holomorphic

in the brane moduli. These are proportional to combinations of structure constants that

break supersymmetry. The N = 1 Minkowski vacuum condition, dJc = 0, requires

T[k|r̂f
r̂
l]̂ − Tîf

i
kl = 0 , Ti[̂|f

i
l̂]k

− Tkr̂f
r̂
̂l̂

= 0 , Tîf
i
k̂l̂

ǫ̂k̂l̂ = 0 , Tîf
̂
klǫ

ikl = 0 . (4.50)

Terms that are holomorphic in the brane moduli appear for example with the combination

T[k|r̂f
r̂
l]̂ + Tîf

i
kl, while the combination with a minus sign gives rise to non holomorphic

terms and is therefore discarded in (4.47).

We summarize in table 2 the torsion induced µ-terms for D6-branes on a factorizable

torus, where the structure constants have one leg on each 2-torus. We have set the normal-

ization of the matter fields to match the result for the D7-brane effective µ-term [35, 38]

in vacua where a T-dual description is available.

5. Soft-terms on twisted tori

A background where supersymmetry is broken spontaneously by torsion or fluxes, induces

soft-supersymmetry breaking terms on a D-brane living in it. In this section, we com-

pute the pattern of soft-terms for factorizable twisted tori in the no-scale supersymmetry

breaking vacua of sections 3.1 and 4.1.
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D60 D61

t1µ11
1

2u1
(T2f

2̂
1̂3

− T3f
3̂
1̂2

− 2T1f
1
23)

1
2s(T2f

2
3̂1̂

+ T3f
3
1̂2̂

− T1f
1
2̂3̂

)

t2µ22
1

2u2
(−T1f

1̂
2̂3

+ T3f
3̂
2̂1

+ 2T2f
2
31)

−1
2u3

(2T3f
3
12 + T1f

1̂
23̂

+ T2f
2̂
13̂

)

t3µ33
1

2u3
(T1f

1̂
3̂2

− T2f
2̂
3̂1

+ 2T3f
3
12)

1
2u2

(2T2f
2
13 + T1f

1̂
32̂

+ T3f
3̂
12̂

)

D62 D63

t1µ11
1

2u3
(2T3f

3
21 + T1f

1̂
23̂

+ T2f
2̂
13̂

) −1
2u2

(2T2f
2
31 + T3f

3̂
12̂

+ T1f
1̂
32̂

)

t2µ22
1
2s(T1f

1
2̂3̂

+ T2f
2
1̂3̂

+ T3f
3
1̂2̂

) 1
2u1

(2T1f
1
32 + T3f

3̂
21̂

+ T2f
2̂
31̂

)

t3µ33
−1
2u1

(2T1f
1
23 + T2f

2̂
31̂

+ T3f
3̂
21̂

) 1
2s(T1f

1
2̂3̂

− T2f
2
1̂3̂

− T3f
3
1̂2̂

)

Table 2: Supersymmetric torsion induced µ-terms for D60 and D6i branes wrapping the cycles

dual to X1X2X3 and ǫijkX iY ̂Y k̂ in a factorizable twisted torus.

Bulk and brane sectors combine in an N = 1 supergravity. Brane moduli φi form

N = 1 chiral superfields charged under a non-Abelian gauge group (or just a U(1), for a

single brane, which will be mostly the case for us). These couple to the neutral bulk moduli,

such that brane fluctuations enter in the definition of the moduli descending from N = 2

hypermultiplets. The Kähler potential is still given by (2.20), but φi enter in Π (2.19),

and therefore modify the definition of the moduli (3.5), (4.8). These can be found in [33]

and [75] respectively for D3-branes and D7-branes in SU(3) structure manifolds, while for

the simplest case of factorizable toroidal models they are given in [76, 77]. If the gauge

symmetry on the branes is unbroken, the vacuum expectation value of the fields φi vanishes

and it is convenient to expand the Kähler potential in power series of φi

K(M,M̄, φ, φ̄) = K̂(M,M̄ ) + Zij̄(M,M̄ )φiφ̄j̄ +
1

2

(

Hij(M,M̄ )φiφj + h.c.
)

+ · · · ,

≡ K̂(M,M̄ ) + KDp(M,M̄, φ, φ̄) (5.1)

where M denotes collectively bulk moduli. The function Hij has been found to be nonzero

for D3-branes [33] and for D7-branes in compactifications with an uplift to F-theory [78].

In the latter case they turn out to be equal to the Zī terms, Hij = Zī. The reason is that

the D-brane moduli enter the Kähler potential through terms of the form (φi+ φ̄i)(φj + φ̄j).

Bulk and brane superpotential are also combined in the expansion

W (M,φ) = Ŵ (M)+WDp(M,φ) = Ŵ (M)+
1

2
µ̃ij(M)φiφj+

1

6
Ỹijk(M)φiφjφk+· · · . (5.2)

The gauge couplings obey

g−2
Dp = 2 Re fDp(M) (5.3)

where fDp is the holomorphic gauge kinetic function. Inserting these in (2.29) and keeping

terms up to cubic order in φ, we get an effective potential for the brane fields in the flat

limit MP l → ∞, m3/2 fixed, of the form

V (eff) = Zī (∂iW
(eff))(∂̄W̄

(eff)) + m2
ī,soft φiφ̄̄ +

1

6
Aijkφ

iφjφk +
1

2
Bijφ

iφj + h.c. , (5.4)
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where [27, 28, 79]

W (eff) =
1

2
µij φiφj +

1

3
Yijk φiφjφk , (5.5)

µij = eK̂/(2M2
Pl)µ̃ij + m3/2Hij − F Ī ∂̄ĪHij ,

Yijk = eK̂/(2M2
Pl)Ỹijk .

and the soft supersymmetry breaking terms read

m2
ī,soft = |m3/2|2 Zī − F IF J̄RIJ̄ī,

Aijk = F IDIYijk , (5.6)

Bij = 2|m3/2|2 Hij − m̄3/2F̄
J̄ ∂̄J̄Hij + m3/2F

IDIHij

−F I F̄ J̄DI ∂̄J̄Hij − eK/(2M2
Pl)µ̃ijm̄3/2 + eK/(2M2

Pl)F IDI µ̃ij ,

where

m3/2 = eK̂/(2M2
Pl)

Ŵ

M2
P l

, F Ī = eK̂/(2M2
Pl)K̂ ĪJDJŴ ,

RIJ̄ī = ∂I ∂̄J̄Zī − Γk
IiZkl̄Γ

l̄
J̄ ̄ , Γl

Ii = Z l̄∂IZ̄i ,

DIYijk = ∂IYijk +
1

2M2
P l

K̂IYijk − 3Γl
I(iYjk)l , (5.7)

DI µ̃ij = ∂I µ̃ij +
1

2M2
P l

K̂I µ̃ij − 2Γl
I(iµ̃j)l .

with MP l the 4d Planck mass. In these expressions we have taken the bulk moduli to be

dimensionless (i.e. the quantum modes). This amounts to factor out the volume dependence

of the 4d dilaton and the Kähler moduli into powers of MP l. The RR and NSNS forms

have units of (length)−1, and Ŵ = M3
P lW̃ , K̂ = M2

P lK̃, with W̃ and K̃ respectively the

dimensionless bulk superpotential and Kähler potential. In these units W̃ is a polynomial

in the bulk moduli with integer coefficients.

Notice that for a D-brane superpotential of the form (5.2), the first term in (5.4) gives

a “supersymmetric” mass term, as well as a trilinear C-coupling between two holomorphic

and one antiholomorphic brane fields. These are given by

m2
ī,susy = eK̂/M2

Pl µ̃ik
¯̃µl̄̄Z

kl̄ , Cijk̄,susy = eK̂/M2
Pl Ỹijl

¯̃µm̄k̄Z
lm̄ . (5.8)

Apart from these, additional mass terms and trilinear couplings are generated from Hij

through the Giudice-Masiero mechanism [65]

µik,GM = m3/2Hik − F Ī ∂̄ĪHik , (5.9)

m2
ī,GM = (µik,GMµ̄l̄̄,GM + µ̃ikµ̄l̄̄,GM + µik,GM

¯̃µl̄̄)Z
kl̄ .

The Hij couplings can be thus absorbed into non-holomorphic contributions in the bulk

moduli to the effective superpotential, W (eff), as already exposed in section 3.3.

– 28 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
7

In a generic compactification the total scalar masses for the brane fields therefore

receive three tree-level contributions,

m2
ī = m2

ī,susy + m2
ī,GM + m2

ī,soft . (5.10)

However, the no-scale condition (2.30) often induces systematic cancellations which lead

to vanishing µij,GM and m2
ī,soft. More precisely, parameterizing Zī and Hij as

Zī = Hij =
∏

I

const.

(M I + M̄ I)αI
, (5.11)

with M I the collective bulk moduli, the condition to have µij,GM = m2
ī,soft = 0 is given by

∑

I, F I 6=0

αI = 1 . (5.12)

In that case, it is easy to show additionally that Bij gets no contribution from Hij, i.e. the

first four terms in the expression for Bij in (5.6) also cancel.

The µ-terms computed in sections 3.3 and 4.3 are the total effective µij of (5.5). In

vacua where a T-dual description is available, they indeed match correctly the effective

D7-brane µ-term computed in [35] by dimensional reduction of the DBI-CS action, and

in [38] by analysis of the effective supergravity in compactifications of F-theory. Thus, in

what follows we will not consider explicitly the Hij couplings, but instead we will work in

terms of W (eff).

Before we move on to the specific supersymmetry breaking vacua, let us remark that

all these are contributions coming from pure moduli mediation. As noticed in [80], non-

perturbative or loop contributions such as anomaly mediation may be generically as im-

portant as moduli mediation contributions, and therefore in a concrete phenomenological

model they should be taken into account.

5.1 Quaternionic breaking

We will compute soft-terms in the case of quaternionic breaking for D9 and D5-branes. The

case of D6-branes in this type of supersymmetry breaking vacua can be easily obtained by

T-duality. The gauge kinetic couplings and Kähler potential KD5, KD9 for factorizable

toroidal compactifications has been computed in [76, 77], obtaining up to second order in φ

KD9 =
3
∑

i

|φi|2
(U i+Ū i)(T i+T̄ i)

, KD5k
=

3
∑

i,j=1

dijk
|φj |2

(T i+T̄ i)(U j +Ū j)
+

|φk|2
(S+S̄)(Uk+Ūk)

,

fD9 = S , fD5k
= T k , (5.13)

where the D5k-branes are wrapping the k-th 2-torus and dijk = 1 for i 6= j 6= k, and 0

otherwise.

We consider no-scale vacua with supersymmetry spontaneously broken by the quater-

nionic sector. For that purpose we take the internal twisted torus to be a torus fibration

over another torus, e.g. of the third torus over the first and second tori. The fibration
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is fully parameterized by the structure constants f 3̄
1̄2̄

, f3
1̄2

, f3
12̄

and f3
1̄2̄

, with all the other

structure constants zero. Assuming G+
(1) is independent of the Kähler modulus of the fiber,

T 3 (i.e., DT3W = 0 and W is independent of S, T1 and T2), we obtain the gravitino mass,

m3/2 = MP le
K̂/(2M2

Pl)(U1 + U
1
)(U2 + U

2
)(T 3 + T

3
)f3

1̄2̄. (5.14)

and the scalar potentials for the light scalar modes of the D-branes in the no-scale vacuum

are,13

VD9 =
eK̂/M2

Pl

M4
P l

∣

∣

∣
M2

P l∂φ3WD9 + (φ3)∗Ŵ
∣

∣

∣

2
, (5.15)

VD51 =
eK̂/M2

Pl

M4
P l

|M2
P l∂φ3WD51 + (φ2)∗Ŵ |2 ,

VD52 =
eK̂/M2

Pl

M4
P l

|M2
P l∂φ1WD52 + (φ1)∗Ŵ |2 ,

VD53 = 0 ,

for pure moduli mediation.

We have summarized in table 3 the pattern of soft supersymmetry-breaking terms

which results of plugging (3.4) and (3.47) into the above scalar potentials. For that we

have assumed the usual superpotential trilinear couplings, Ỹijk = ǫijk. The rescaled struc-

ture constants, f̃ I
JK , are defined in (3.46). The resulting pattern is clearly related to the

one arising in the worldvolume of D3 and D7-branes in the dual compactification [32 – 35].

Indeed, T-dualizing along the third torus, D53-branes are mapped to D3-branes, whereas

D51, D52 and D9-branes are mapped respectively to D72, D71 and D73-branes. As ex-

pected, the light modes of D53-branes remain massless, whereas only one complex geometric

moduli of the D51, D52 and D9-branes becomes massive, corresponding to the geometric

moduli of the dual D7-brane. This structure of zero modes can be understood in terms of

the condition (5.12). Indeed, making use of (5.13), we get that µij,GM = m2
ī,soft = 0 for all

the scalars in the D53-branes, and all the scalars but φ1, φ2 and φ3 in the D52, D51 and

D9-branes respectively, in agreement with the results of table 3.

Both in the supersymmetric and in the no-scale cases, the couplings induced by W3

(i.e., by the structure constants f 3̄
1̄2̄

, f3
1̄2

) give rise to masses and C-terms satisfying (5.8)

and therefore are compatible with N = 1 supersymmetry with some massive chiral super-

multiplets. On the other hand, W1, proportional to f3
1̄2̄

, gives rise to couplings satisfying

Tr(m2
i,soft) = m2

3/2 , Aijk = hijkTr (m2
i,soft) , (5.16)

with, hijk = eK̂/2MPlǫijk(ZīıZj̄Zkk̄)
−1/2 the physical Yukawa. This behavior was already

observed in [32 – 35] for D3 and D7-branes in the presence of 3-form fluxes. D6-branes in

vacua where supersymmetry is broken by the quaternionic sector follow the same pattern

of soft supersymmetry breaking terms.

13We take the usual rescaling of the matter fields, φi → (Ziı̄)
−1/2φi, in order to have canonically normal-

ized kinetic terms.
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D9 D51 D52 D53

µ11 0 0 4eK̂/2f̃3
12̄

t3 0

µ22 0 4eK̂/2f̃3
1̄2t3 0 0

µ33 4eK̂/2f̃ 3̄
1̄2̄

t3 0 0 0

m2
11̄

0 0 |µ33|2 + |m3/2|2 0

m2
22̄

0 |µ22|2 + |m3/2|2 0 0

m2
33̄ |µ11|2 + |m3/2|2 0 0 0

B11 0 0 2µ33m̄3/2 0

B22 0 2µ22m̄3/2 0 0

B33 2µ11m̄3/2 0 0 0

A123 gD9m3/2 gD51m3/2 gD52m3/2 0

C12̄3̄ 0 0 µ33 gD52 0

C1̄23̄ 0 µ22 gD51 0 0

C1̄2̄3 µ11 gD9 0 0 0

Table 3: Torsion induced soft parameters for D9, D51, D52 and D53-branes, in a no-scale vacuum

of a factorizable twisted torus with W independent of S, T1, T2, and DMW = 0 for the remaining

moduli. The gauge coupling constants are gD9 = (S + S̄)−1/2 and gD5k
= (T k + T̄ k)−1/2, and we

have set MPl = 1.

The pattern of moduli mediated soft supersymmetry-breaking terms therefore can be

recast in terms of a small set of parameters: the gravitino mass plus some topological µ-

terms for each stack of branes. Hence, consider for example the no-scale K3×T 2 fibration

of section 3.2. In a complex basis the structure constants (3.25) read

f3
1̄2 = f3

12̄ = −f 3̄
1̄2̄ =

1 + iu

4u2
. (5.17)

From (5.15) we then obtain the tree-level scalar potentials for the D-brane fields

VD9 =

∣

∣

∣

∣

φ1φ2

√
2s

− (1 + iu)φ3 + t(3iu + 1)(φ3)∗

(32t̃1t̃2tu3)1/2

∣

∣

∣

∣

2

(5.18)

VD51 =

∣

∣

∣

∣

∣

φ1φ3

√

2t̃1
− (1 + iu)φ2 − t(3iu + 1)(φ2)∗

(32t̃1 t̃2tu3)1/2

∣

∣

∣

∣

∣

2

VD52 =

∣

∣

∣

∣

∣

φ2φ3

√

2t̃1
+

(1 + iu)φ1 − t(3iu + 1)(φ1)∗

(32t̃1 t̃2tu3)1/2

∣

∣

∣

∣

∣

2

VD53 = 0

More detailed phenomenological analysis for this class of vacua in the D3/D7 setup, taking

into account other effects such as non-perturbative effects or α′ corrections to the Kähler

potential, can be found in [80 – 83].

5.2 Mixed breaking

For type IIA we have seen in section 4.1.2 that there is another class of no-scale vacua

where supersymmetry is broken by moduli belonging in part to descendants of N = 2
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hypermultiplets, and in part to descendants of scalars in vector multiplets. In this sec-

tion we compute the pattern of soft-terms for D6-branes placed on this type of vacua

in factorizable (twisted) T 6 models, with 3 complex structure and 3 Kähler moduli, and

structure constants with one leg on each torus. We consider a no-scale vacua where super-

symmetry is broken by T1, U2, U3, i.e. ∂T1W = ∂U2W = ∂U3W = 0 in the vacuum, while

DT2W = DT3W = DU1W = DSW = 0. Supersymmetry breaking is due solely to the

torsion in this class of vacua, i.e. H and all RR fluxes are zero. The bulk superpotential is

Ŵ = M2
P le

−K̂/(2M2
Pl)m3/2 = M3

P l

[

ST2f
2
1̂3̂

− ST3f
3
1̂2̂

+ U1T2f
2̂
1̂3

− U1T3f
3̂
1̂2

]

(5.19)

The other structure constants allowed in a factorizable torus vanish in this type of vacua.

As explicitly shown in the particular example of section 4.2.2, the imaginary parts of

the Kähler moduli appearing in the superpotential, Im T2 and Im T3, are related to the

background H. Indeed, from H = 0 we get

H = −dB = −(f2
1̂3̂

Im T2−f3
1̂2̂

Im T3)e
4∧e5∧e6+(f 2̂

1̂3
Im T2−f 3̂

1̂2
Im T3)e

4∧e2∧e3 . (5.20)

Since H 6= 0 may induce additional µ-terms in the D6-branes which we are not computing

here, in what follows we set H = Im T2 = Im T3 = 0. The final result however should not

depend on this choice, as the VEV for physical field, H, is fixed.

The Kähler potential for D6-branes is the T-dual version of (5.13), where we should

exchange Kähler and complex structure moduli, D9 by D60 and D5k by D6k. We get

KD60 =
3
∑

i

|φi|2
(U i+Ū i)(T i+T̄ i)

, KD6k
=

3
∑

i,j=1

dijk
|φj |2

(U i+Ū i)(T j +T̄ j)
+

|φk|2
(S+S̄)(T k+T̄ k)

,

fD60 = S , fD6k
= Uk . (5.21)

Rescaling the matter fields as in the quaternionic breaking (see footnote 13), we get the

following potential for D6-branes in these vacua up to cubic order in φi,

VD60 =
eK̂/M2

Pl

M4
P l

∣

∣M2
P l∂φ1WD60

∣

∣

2
, (5.22)

VD61 =
eK̂/M2

Pl

M4
P l

∣

∣M2
P l∂φ1WD61

∣

∣

2
,

VD62 =
eK̂/M2

Pl

M4
P l

[

∣

∣

∣
M2

P l∂φ2WD62 + (φ2)∗Ŵ
∣

∣

∣

2
+
∣

∣

∣
M2

P l∂φ3WD62 + (φ3)∗Ŵ
∣

∣

∣

2

+
∣

∣

∣M2
P l∂φ1WD62 − (φ1)∗Ŵ

∣

∣

∣

2
− 2 |φ1Ŵ |2

]

,

VD63 =
eK̂/M2

Pl

M4
P l

[

∣

∣

∣M2
P l∂φ2WD63 + (φ2)∗Ŵ

∣

∣

∣

2
+
∣

∣

∣M2
P l∂φ3WD63 + (φ3)∗Ŵ

∣

∣

∣

2

+
∣

∣

∣
M2

P l∂φ1WD63 − (φ1)∗Ŵ
∣

∣

∣

2
− 2 |φ1Ŵ |2

]

.

We have summarized in table 4 the pattern of soft supersymmetry-breaking terms

which results of plugging (4.6), (4.47) and (4.48) into the above scalar potentials, for mixed

– 32 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
7

D60 D61 D62 D63

µ11 2e
K̂
2 (t2f

2̂

1̂3
− t3f

3̂

1̂2
) 2e

K̂
2 (t2f

2

3̂1̂
+ t3f

3

1̂2̂
) 0 0

µ22 0 0 2e
K̂
2 (t2f

2

1̂3̂
+ t3f

3

1̂2̂
) 2e

K̂
2 (t2f

2̂

31̂
+ t3f

3̂

21̂
)

µ33 0 0 2e
K̂
2 (t2f

2̂

1̂3
+ t3f

3̂

1̂2
) 2e

K̂
2 (t2f

2

3̂1̂
− t3f

3

1̂2̂
)

m2

11̄
|µ11|2 |µ11|2 −|m3/2|2 −|m3/2|2

m2

22̄
0 0 |µ22|2 + |m3/2|2 |µ22|2 + |m3/2|2

m2

33̄
0 0 |µ33|2 + |m3/2|2 |µ33|2 + |m3/2|2

B11 0 0 0 0

B22 0 0 2µ22 m̄3/2 2µ22 m̄3/2

B33 0 0 2µ33 m̄3/2 2µ33 m̄3/2

A123 0 0 gD62m3/2 gD63m3/2

C12̄3̄ µ11 gD60 µ11 gD61 0 0

C1̄23̄ 0 0 µ22 gD62 µ22 gD63

C1̄2̄3 0 0 µ33 gD62 µ33 gD63

Table 4: Torsion induced soft parameters for D6M -branes, in a no-scale vacuum of a factorizable

twisted torus with W independent of T1, U2, U3. The gauge coupling constants are gD60 = (S +

S̄)−1/2 and gD6k
= (Uk + Ūk)−1/2, and we have set MPl = 1.

supersymmetry breaking vacua. Note that, unlike the case for quaternionic breaking, there

is at least one modulus that becomes massive for each type of brane. This confirms the

fact that this class of vacua is not related by T-duality to the quaternionic one.

Assuming (5.11) for Hi, and making use of (5.12) and (5.21), it is possible to check

that µij,GM = m2
ī,soft = 0 for all the scalars in the worldvolume of the D60 and D61-branes.

Hence, the µ-terms for these branes, shown in table 4, correspond to purely supersymmetric

(holomorphic in bulk moduli) µ̃-terms. Moreover, ReW1 ∼ m3/2 gives rise to soft couplings

in the worldvolume of the D62 and D63-branes which satisfy the relations (5.16). To this

regard, the induced soft masses for φ1 are always tachyonic, signaling an instability of the

D62 and D63-branes at the origin, within this type of vacua. It is tempting to identify

this instability with a Higgs mechanism. The final state, however, is not captured by

the potentials (5.22), as they were derived under the assumption 〈φi〉 = 0. Analogous

tachyonic masses were obtained in heterotic compactifications with asymmetric Kähler

domination [85].14 It would be desirable to obtain a better understanding of the nature of

these tachyonic modes within this context.

Finally, as an illustration of how the above equations apply in a concrete model, con-

sider the example of section (4.2.2). The non trivial structure constants can be read

from (4.34),

f2
3̂1̂

= f3
1̂2̂

= f 2̂
31̂

= f 3̂
1̂2

= 1 . (5.23)

14We are grateful to Luis Ibáñez for this observation.
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From (5.22) then we obtain the following tree-level scalar potentials for the D-brane moduli,

VD60 =

∣

∣

∣

∣

∣

φ2φ3

√
2s

− φ1

s(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

, (5.24)

VD61 =

∣

∣

∣

∣

∣

φ2φ3

√
2s

+
φ1

s(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

,

VD62 =

∣

∣

∣

∣

∣

φ1φ2

√
2u2

− (φ3)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

φ1φ3

√
2u2

+
(φ2)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

φ2φ3

√
2u2

+
(φ1)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

− |φ1|2
4t1u2u3

,

VD63 =

∣

∣

∣

∣

∣

φ1φ2

√
2u3

− (φ3)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

φ1φ3

√
2u3

+
(φ2)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

φ2φ3

√
2u3

+
(φ1)∗

(8t1u2u3)
1
2

∣

∣

∣

∣

∣

2

− |φ1|2
4t1u2u3

.

6. Conclusions

We have explored the conditions to have no-scale supergravity vacua on orientifolds of SU(3)

structure manifolds, with supersymmetry spontaneously broken at tree-level. Although we

have covered a broad set of supergravity backgrounds, we have found only two classes of

solutions, depending on whether the supersymmetry breaking is mediated by neutral matter

descending from N = 2 hypermultiplets or from a mixture of vector and hypermultiplets.

The first case, which we have denoted “quaternionic breaking”, corresponds to T-duals of

the known type IIB no-scale vacua with 3-form fluxes, and is fully characterized by a single

ISD poly-form mixing fluxes and torsion. The second, labelled as “mixed breaking”, is

instead related to fluxless Scherk-Schwarz compactifications and can be characterized by a

purely imaginary poly-form.

We have also computed the effective µ-terms induced by the torsion of the SU(3) struc-

ture manifold in the gauge theory of D5, D6 and D9-branes, for vacua based on twisted tori.

These encode the tree-level dynamics of the branes in the supergravity vacuum. The result-

ing patterns for type IIB (IIA) vacua, summarized in tables 1 and 2, can be nicely arranged

in terms of the holomorphic (symplectic) properties of the structure constants. A similar

fact was already observed in [35, 38] for the D7-brane flux induced µ-term. The present

patterns, however, contain a much richer structure, allowing for mass terms for mostly all

the brane moduli. The potential applications for model building are therefore promising.

Notice that, due to the presence of flat directions, every attempt of extracting phe-

nomenological information from these vacua should also take the quantum dynamics into

account. In this sense, the patterns of soft terms for pure moduli mediation presented in

section 5 are partial and, in a concrete phenomenological model, should be completed with

non-perturbative and loop contributions.

Since a full string theory treatment of non-perturbative effects is missing, one is usually

advocated to implement those at the level of the effective field theory. From this perspec-

tive, the structure of µ-terms turns out to be also determinant, as the non-perturbative

dynamics is constrained by the number of fermionic zero modes.

No-scale solutions of ten dimensional supergravity have been considered very frequently

in the framework of type IIB Calabi-Yau orientifolds with O3/O7-planes and 3-form fluxes.
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In this case, the supersymmetry is often restored when non-perturbative effects are present.

To this regard, we expect a similar behavior for the full no-scale quaternionic breaking

family of vacua. It would be very interesting however to extend this analysis to the case of

mixed breaking studied here, and to check in particular if the breaking of supersymmetry

is actually propagated to the complete solution. It would also be nice to understand the

tachyonic instability observed for one of the brane moduli in this family of no-scale vacua.

Finally, there are also other directions which we believe may deserve further research.

The conditions for supersymmetric vacua allow for more general structures, such as SU(3)×
SU(3). It is natural to expect that these solutions also admit non-supersymmetric marginal

deformations analogous to the ones discussed here. It may be interesting to look for new

families of no-scale vacua within this context. Understanding the structure of the effective

supergravity is a major task for phenomenological applications of string theory. We hope

to come back soon to these issues.
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A. Conventions and spinors

We take orientation conventions for which

∗J =
1

2
J ∧ J ,

∫

J ∧ J ∧ J > 0 . (A.1)

J and Ω can be obtained from the SU(3) invariant spinor η and the metric by

η†+γmη± = 0 , η†−γmnpη+ = 1
2 i

(NJ

NΩ

)
1
2

Ωmnp , (A.2)

η†±γmnη± = ±1
2 i Jmn , η†+γmnpη− = 1

2 i

(NJ

NΩ

)
1
2

Ω̄mnp ,

where NJ and NΩ are given in (2.3) and η†±η± = 1
2 , η∗+ = η− (i.e. we are using the

intertwiner between γm and −γ∗
m to be 1).

The Mukai pairing between forms is related to the norm of bispinors by [10],
∫

〈Φ, χ〉 =
1

2
tr
(

iγ7Φ
T
ǫ χǫ

)

NJ , (A.3)

where Φǫ, χǫ are the bispinors corresponding to the forms Φ, χ. We find also convenient to

use the Fierz identity

η+η̃†± =
1

4

6
∑

k=0

1

k!

(

η̃†±γm1...mk
η+

)

γmk ...m1 , (A.4)
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to write the forms in (2.8).

B. Decomposition in SU(3) representations

Part of the underlying approach that we use in the paper relies on the decomposition of

forms in SU(3) representations. For poly-forms, it is more convenient to use the generalized

Hodge diamond [43, 84, 45], whose elements are given by the different poly-forms in (4.3).

Each component is then computed by an appropriate integral. Concretely, the different

components of the 3-form decomposition (3.3) are obtained from,

G+
(1) = − i

12NJ

∫

Ω ∧ G , G−
(1) =

i

12NJ

∫

Ω̄ ∧ G , G±
(3) =

1

2
JxG± . (B.1)

Analogously, the components of the even form G in the SU(3) decomposition (4.3) are

expressed in terms of the following integrals,

G±
(1) = ± i

8NΩ

∫

〈e∓iJ , G〉 , G±
mn = ± i

32NJ
JmpJnq

∫

〈γpe±iJγq, G〉 ,

G+
m = − 1

16NΩ
Jmn

∫

〈γnΩ, G〉 , G̃+
m =

1

16NΩ
Jmn

∫

〈Ωγn, G〉 ,

G−
m = − 1

16NΩ
Jmn

∫

〈γnΩ, G〉 , G̃−
m =

1

16NΩ
Jmn

∫

〈Ωγn, G〉 , (B.2)

with γm given in (4.4).

For real single-degree even forms, we use also the following SU(3) decomposition,

F2 =
1

3
F

(1)
2 J + Re (F

(3)
2 xΩ) + F

(8)
2 ,

F4 =
1

6
F

(1)
4 J ∧ J + Re (F

(3)
4 ∧ Ω) + F

(8)
4 ,

F6 =
1

6
F

(1)
6 J ∧ J ∧ J . (B.3)

These singlets are a combination of the four singlets G±
(1), G±

mnJmn defined in (4.3).

Finally, for F3 and H, we use

F3 =
3NJ

NΩ
Re(F(1)Ω̄) + F(3) ∧ J + F(6) , (B.4)

H =
3NJ

NΩ
Re(H(1)Ω̄) + H(3) ∧ J + H(6) . (B.5)

where comparing to (3.3), F(1) = F+
(1) = (F−

(1))
∗. In O6 compactifications H is odd under

the orientifold action, same as Im Ω. This implies that H(1) is real.

C. Torsion classes on twisted tori

For completeness in this appendix we present the torsion classes for a twisted torus in terms

of the structure constants fa
bc defined in (3.41). For alternative expressions, the reader may

also consult [16].
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Defining the spin connection 1-form with holomorphic indices, ωmn, through,

dzm + ωmn ∧ zn + ωmn̄ ∧ z̄n = 0 , (C.1)

with holomorphic vectors zm = em + iUm
nen, for m = 1, 2, 3, and acting with the exterior

derivative on Ω and J given in (3.43), we extract the torsion classes,

W1 =
2i

3
ǫmnoızmωno , (C.2)

W2 = −ǫmnoω
mn ∧ zo −W1J , (C.3)

W3 =
i

2
ωmn ∧ zm ∧ zn +

3

4i

NJ

NΩ
W1Ω + c.c. , (C.4)

W4 = W5 = 0 , (C.5)

with ǫ123 = −i. In terms of (3.41) the spin connection reads,

ωab ≡ −1

2

(

ıeadeb − ıebdea − ec(ıeaıebdec)
)

=
1

2

(

f b
cde

cgad − fa
cde

cgbd − f c
deg

adgbeec

)

,

(C.6)

with ec ≡ gbce
b. Hence, in terms of structure constants with holomorphic/antiholomorphic

indices,

W1 =
i

3
gmr̄gns̄ǫmnof

o
r̄s̄ , (C.7)

W2 = −W1J + ǫmnog
ns̄
(

f o
p̄s̄ +

gqp̄

2
f q

ōs̄

)

zm ∧ z̄p , (C.8)

W3 =
i

2

(

gms̄f
s̄
nō −

grō

2
f r

mn

)

zm ∧ zn ∧ z̄o + c.c. , (C.9)

W4 = W5 = 0 . (C.10)
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